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Abstract

A non-destructive inverse method is developed to determine internal temperature distribution of the PEMFCs. In this study, the attention
is focused on global measurement for the irregular temperature distribution at the interface between the carbon plate and the membrane
electrode assembly (MEA) based on the measured temperature data on the outer surface of the end plate. A direct problem solver capable of
predicting temperature distribution in the solid layers of the PEMFC under various conditions is incorporated in the inverse approach to provide
t rly suitable
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emperature solutions. In this report, a concept of point-by-point temperature prediction is presented. This approach is particula
or determining irregular temperature distribution that is difficult to handle by the existing polynomial-function approach [C.H. Che
hang, Predictions of internal temperature distribution of PEMFC by undestructive inverse method, J. Power Sources, in press]
f test cases are considered in this study. Some irregular temperature functions are specified and regarded as exact temperature

o predict. Meanwhile, the influence of uncertainty in the measured temperature data on the outer surface is evaluated.
2004 Elsevier B.V. All rights reserved.
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. Introduction

In the past several years, significant progress in the de-
elopment of fuel cell technology has been achieved by
n increasing number of experimental[1–3] and theoretical

4–7] studies. The experiments can help determine the over-
ll performance of the fuel cell and find out preferable oper-
tion conditions. The theoretical studies help understand the
hysico-chemical process and the transportation phenomena

nside the fuel cell and provide detailed information which
ay not be easily obtainable by the experiments.
On the other hand, the optimization methods are gradu-

lly introduced into the fuel cell design phase. For example,
nonlinear-constrained optimization procedure to maximize

he performance of the cathode with interdigitated air chan-
els in a PEMFC was presented by Grujicic et al.[8]. In Ref.

∗ Corresponding author. Tel.: +886 2 25925252/3410;
ax: +886 2 25997142.
E-mail address:cheng@ttu.edu.tw (C.-H. Cheng).

[8], the optimization was based on a steady-state single-
electro-chemical model for the cathode. In the study of
hamed and Jenkins[9], a genetic algorithm is employed
optimize a PEMFC stack design by searching for the
configuration in terms of cell number and the cell sur
area. Grujicic and Chittajallu[10] used a two-dimension
electrochemical model to determine the optimal desig
the operational and the geometrical parameters for ca
of a fuel cell.

In general, the electrical energy produced is accompa
by an approximately equal amount of thermal energy d
pated. Therefore, thermal management of a fuel cell is of
concerns to the researchers. In order to ensure efficien
mal management for the fuel cell, it is required to monitor
internal temperature distribution of the PEMFC. Howe
the internal temperature of the fuel cell is usually not
ily measured, especially for a global measurement. To
the internal temperature information, one may use des
tive methods, in which a number of temperature sensor
inserted into the fuel cell to measure the internal temper
378-7753/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2004.11.019
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Nomenclature

C heat capacity (kJ kg−1 ◦C−1)
h heat transfer coefficient (W m−2 ◦C−1)
H height (m)
J objective function
k thermal conductivity (W m−1 ◦C−1)
L length of fuel cell (m)
NX, NY, numbers of grid points inx-, y-, and

NZ z-direction
q* internal heat source (W m−3)
t time
T temperature (◦C)
T̄ simulated experimental temperature data (◦C)
Ta ambient temperature (◦C)
W thickness (m)
x, y, z Cartesian coordinates (m)

Greek symbols
β step size
γ conjugate gradient coefficient
θ exact temperature solution
ρ density (kg m−3)
σ experimental temperature uncertainty
ω random number varied−1 and 1

Subscripts
C carbon plate
Cu copper plate
e end plate
ex exact
g gasket
i, j, k grid point indices
ini initial guess

Superscript
n iteration step

directly. Unfortunately, the destructive methods may appre-
ciably disturb the original flow and current fields inside the
fuel cell, and may also be possible to cause leakage problems
of the fuel and oxidant gases.

In order to resolve these problems, Cheng and Chang[11]
introduced the concept of an inverse method for obtaining
the global temperature distribution at the MEA/carbon plate
interface in the PEMFC. This method is capable of predict-
ing internal temperature distribution of a PEMFC efficiently
based on the outer surface temperature data without caus-
ing any damage to the fuel cell. However, in the study, the
temperature distribution of the predicted interface must be
approximated by a polynomial function. As a result, if pre-
dicted temperature distribution cannot be cast into a form of
a polynomial function accurately, there will exists a remark-

able error in predictions. Thus, the flexibility of the inverse
method is actually limited due to the polynomial-function
assumption.

In the present study, the existing polynomial-function ap-
proach is modified and extended to the applications for a more
flexible form of temperature distribution at the MEA/carbon
plate interface. The temperature distribution is predicted by
using a point-by-point concept which is not limited by the
mathematical assumption with a polynomial-function form
for the temperature distribution. Therefore, even an irregular
temperature distribution at the MEA/carbon plate interface
can be predicted accurately.

The validity of the present method is demonstrated by
dealing with two cases of exact temperature function. In ad-
dition, the influence of the uncertainty in the measured tem-
perature data on the outer surface of the end plate is evaluated.
Relative performance of the present approach is demonstrated
by a comparison with the existing method.

Fig. 1shows the schematic of a typical single-cell PEMFC.
The PEMFC shown in this figure is equipped with a polymer
electrolyte at the center. The polymer electrolyte is sand-
wiched between two electrodes and two gas diffusion layers
to form a MEA, which is placed between two carbon plates
having machined groves that provide flow channels for fuel
and oxidant individually. In addition, two copper current col-
l lates
t f the
c . The
s .

eat
i gen-
e f the

.

ectors are attached to the outer faces of the carbon p
o conduct the current. In general, the outer surfaces o
opper current collectors are insulated by gasket layers
ingle cell is then compressed tightly by two end plates

While the cell is in operation, a certain amount of h
s generated by the electrochemical reaction. The heat
rated must be conducted toward the outer surfaces o

Fig. 1. Schematic of a single-cell PEMFC and the simulated zone
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Fig. 2. Geometry of the simulated zone.

end plates and then dissipated to the ambient air at tempera-
tureTa by convection. Heat transfer coefficient on the outer
surfaces is denoted byh. As stated earlier, the temperature
distribution at the MEA/carbon plate interface is predicted
by the point-by-point approach based on the measured tem-
perature data on the outer surface of the end plate. The tem-
perature information on the outer surfaces of the end plates
can be gathered by using an array of distributed temperature
sensors installed on the outer surface of the end plate or by
an infrared radiation thermal image system. Note that local
temperature distribution at the MEA/carbon plate interface
reflects local condition of electrochemical reaction to a cer-
tain extent. Since in the present study the MEA/carbon plate
interface temperature is determined based on the temperature
data on the outer surface of the end plate, the simulated zone
is ranged from the MEA/carbon plate interface to the outer
surface of the end plate, as indicated by the dashed lines in
Fig. 1. Geometric variables of the simulated zone are illus-
trated inFig. 2, and the fixed dimensions, material properties,
and surface conditions are given inTable 1.

In Fig. 2, the array of the temperature measurement points
on the outer surface of the end plate and the array of the tem-
perature prediction points at the MEA/carbon plate interface
are both shown. Typically, the numbers and the locations of
the temperature measurement points, the temperature predic-
tion points, and the grid points used in the numerical analysis
of the direct problem solver, are all identical.

2. Optimization method

2.1. Direct problem solver

The solid materials in the simulated zone, including the
carbon plate, copper current collector, gasket, and end plate of
the PEMFC, are all assumed to be homogeneous, isotropic
mediums. In these solid materials, heat conduction is gov-
erned by the following partial differential equation:

ρC
∂T

∂t
= k∇2T + q∗ (1)

Table 1
Fixed dimensions, material properties, and surface conditions of the test cases

Carbon plate Copper plate Gasket End plate

L L
W W
H H
k k
E vection
h h
T T
= 0.21 m L= 0.21 m

C = 0.21 m WCu = 0.21 m

C = 0.003 m HCu = 0.003 m

C = 95 W m−1 ◦C−1 kCu = 380 W m−1 ◦C−1

dge convection Edge convection
= 10 W m−2 ◦C−1 h= 10 W m−2 ◦C−1

a = 25◦C Ta = 25◦C
= 0.21 m L= 0.21 m

g = 0.21 m We = 0.21 m

g = 0.0003 m He = 0.004 m

g = 0.17 W m−1 ◦C−1 ke = 200 W m−1 ◦C−1

Edge convection Edge and outer surface con
= 10 W m−2 ◦C−1 h= 10 W m−1 ◦C−1

a = 25◦C Ta = 25◦C
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whereq* denotes the internal heat source;ρ,C, andkare den-
sity, heat capacity, and thermal conductivity of the individual
solid materials, respectively; andT is the temperature. The
present approach is based on the steady-state thermal behav-
ior. Thus, the three-dimensional steady-state heat conduction
equation without internal heat source can be derived as:

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= 0 (2)

The boundary conditions associated with the above heat
conduction equation are:

(1) Outer surfaces of end plates or edges of all solid layers:

±k
∂T

∂n
= h[T − Ta] (3a)

wheren is the coordinate normal to the respective sur-
faces, andh is assigned to be 10 W m−2 ◦C−1 for a
natural-convection situation.

(2) Interfaces between two solids:

T1 = T2 (3b)

k1
∂T1

∂n1
= k2

∂T2

∂n2
(3c)

where the indices 1 and 2 denote the two successive solid
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words,TCi,j at all theNX×NYgrid points at the MEA/carbon
plate interface are regarded as the major variables to predict.
Despite of longer computation time consumed, this point-by-
point approach is capable of predicting interface temperature
distribution corresponding to any sets of the measured tem-
perature data.

Minimization of the objective function makes the differ-
ence betweenTei, j and T̄ei,j vanish. The minimization of
the objective functionJ is achieved by using the conjugate-
gradient method described by Hanke[13]. The conjugate-
gradient method is used to evaluate the gradients of the ob-
jective function and to find the conjugate directions for the
updated solutions with the help of a numerical sensitivity
analysis proposed by Cheng and Wu[14]. In general, in a
finite number of iterations the convergence can be attained.

In this study, the inverse method is further modified to
become compatible with the point-by-point approach. For
this purpose, letT n

Ci,j (i = 1, 2, . . ., NX; j = 1, 2, . . ., NY) be
thenth iterative values of the temperature at grid point (i, j)
at the interface between the carbon plate and MEA, and let
the first search direction toward the minimization ofJ be the
steepest descent direction in terms of the gradient functions

Fig. 3. Grid independence of temperature solutions obtained by direct prob-
lem solver, based on 11× 11× 41, 21× 21× 41, and 31× 31× 41 grids.
The exact temperature function of case 2 is given for the MEA/carbon plate
interface.
layers in contact.

Eqs.(2) and (3)are then discretized to yield a set of sim
aneous algebraic equations by the finite-difference me

ith the help of successive-over-relaxation method (S
12], the numerical solution for the three-dimensional t
erature distribution atNX×NY×NZgrid points can be ob

ained. Note thatNZ is the sum ofNZC,NZCu,NZg, andNZe.

.2. Inverse method

In the present study, an objective function (J) in conjunc-
ion with the optimization process is defined in the followi

=
NX∑
i=1

NY∑
j=1

(Tei,j − T̄ei,j)
2 (4)

hereTei,j is the iterative temperature provided by the
ect problem solver at the grid point (i, j) on the outer sur
ace of the end plate, and̄Tei,j is the experimental measu

ent temperature at the same point which is determine
ēi,j = Texi,j + σω, whereTexi,j , σ, andω are the exact tem
erature, experimental uncertainty, and a random numbe

ed −1 and 1, respectively. Note that whenσ = 0, the exper
mental temperature distribution measured on the end
s identical to the exact one. In addition, the MEA/car
late interface temperature distribution to predict,TC (X, Y),

s represented by a matrix ofNX×NYdiscrete values ofTCi,j .
heNX×NYvalues ofTCi,j at theNX×NYgrid points, tha

ead to minimization of the objective function defined in
4), are determined by using the optimization method. In o
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Fig. 4. Comparison between polynomial-function method[11] and present approach, for cases 1 and 2.
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which are determined by

∂J

∂TCi,j

=
NX∑
k=1

NY∑
q=1

2(Tek,q − T̄ek,q)
∂Tek,q

∂TCi,j

,

i = 1, 2, . . . , NX; j = 1, 2, . . . , NY (5)

where the terms∂Tek,q/∂TCi, j are referred to as the sensitiv-
ity coefficients. The task of the numerical sensitivity analysis
[14] is to evaluate the sensitivity of the objective function
J with respect to the perturbations ofTCi, j . Therefore, the
terms∂Tek,q/∂TCi, j on the right-hand side of Eq.(5)are calcu-
lated by introducing small perturbations toTCi, j at grid point
(i, j) at the predicted interface. The perturbed temperature
on the predicted interface is carried out, and then the three-
dimensional temperature solutions are obtained by the direct
problem solver. By using the obtained temperature solutions,
the sensitivity ofTek,qat point (k,q) to the perturbation inTCi, j
at point (i, j) is determined such that the value of∂Tek,q/∂TCi, j
can be calculated. The choice of the magnitude of the small
perturbation inTCi, j for each grid point at the MEA/carbon
plate interface is critical for the numerical sensitivity analy-
sis. In the study, the perturbation quantity is typically chosen
between 0.1 and 1.0.

Based on the conjugate-gradient method, the values of
TCi,j on all the grid points are updated by

T n+1
Ci,j = T n

Ci,j − βi,jπ
n
i,j,

i = 1, 2, . . . , NX; j = 1, 2, . . . , NY (6)

where each of the search directionsπn
i,j is expressed as a

linear combination of the steepest descent directions and a
modified vector. That is,

πn
i,j = ∂J

∂TCi,j

+ γn
i,jπ

n−1
i,j ,

i = 1, 2, . . . , NX; j = 1, 2, . . . , NY (7)

where the conjugate gradient coefficientsγn
i,j are calculated

by

γn
i,j =

[
(∂J/∂TCi,j)n

(∂J/∂TCi,j)n−1

]2

,

i = 1, 2, . . . , NX; j = 1, 2, . . . , NY (8)

The step sizesβi, j (i = 1, 2,. . .,NX; j = 1, 2,. . .,NY) appearing
in Eq. (6) are to be determined. In theory, the values ofβi,j
are selected to minimize the updated objective functionJn+1.
With the help of Eqs.(4) and(6), Jn+1 can be deduced as

. . , T n
C

1,2π
n
1,

n
NX,2

B into
t s

+ β1

j

,2
+

M

n
1,NY

N∑
i=
Jn+1 =
NX∑
i=1

NY∑
j=1

[T n+1
ei,j (T n+1

C1,1, T
n+1
C1,2, . . . , T

n+1
C1,NY , .

=
NX∑
i=1

NY∑
j=1

[T n+1
ei,j (T n

C1,1 − β1,1π
n
1,1, T

n
C1,2 − β

−β1,NYπn
1,NY , . . . , T n

CNX,1 − βNX,1π
n
NX,1, TC

Jn+1 =
NX∑
i=1

NY∑
j=1

[
(T n

ei,j − T̄ei,j) −
(

β1,1π
n
1,1

∂T n
ei,j

∂T n
C1,1

+βNX,1π
n
NX,1

∂T n
ei,j

∂T n
CNX,1

+ βNX,2π
n
NX,2

∂T n
ei,

∂T n
CNX

β1,1π
n
1,1

NX∑
i=1

NY∑
j=1

(
∂T n

ei,j

∂T n
C1,1

∂T n
ei,j

∂T n
Ck,q

)
+ · · · + β1,NYπ
βNX,1π
n
NX,1

NX∑
i=1

NY∑
j=1

(
∂T n

ei,j

∂T n
CNX,1

∂T n
ei,j

∂T n
Ck,q

)
+ · · · + βNX,NY

=
NX∑
i=1

NY∑
j=1

(Tei,j − T̄ei,j)
∂T n

ei,j

∂T n
Ck,q

, k = 1, 2, . . . , NX; q
+1
NX,1, T

n+1
CNX,2, . . . , T

n+1
CNX,NY ) − T̄ei,j]

2

2, . . . , T
n
C1,NY

− βNX,2π
n
NX,2, . . . , T

n
CNX,NY − βNX,NYπn

NX,NY ) − T̄ei,j]
2

(9)

y introducing a first-order Taylor series approximation
he above expression, the (n+1)th objective function become

,2π
n
1,2

∂T n
ei,j

∂T n
C1,2

+ · · · + β1,NYπn
1,NY

∂T n
ei,j

∂T n
C1,NY

+ · · ·

· · · + βNX,NYπn
NX,NY

∂T n
ei,j

∂T n
CNX,NY

)]2

(10)

aking the derivative ofJn+1 with respect toβi,j vanish gives

X

1

NY∑
j=1

(
∂T n

ei,j

∂T n
C1,NY

∂T n
ei,j

∂T n
Ck,q

)
+ · · · +

πn
NX,NY

NX∑
i=1

NY∑
j=1

(
∂T n

ei,j

∂T n
CNX,NY

∂T n
ei,j

∂T n
Ck,q

)

= 1, 2, . . . , NY (11)
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Eq.(11)represents a set ofNX×NYlinear algebraic equa-
tions which could be solved simultaneously to yield the op-
timal step sizeβi, j (i = 1, 2,. . .,NX; j = 1, 2,. . .,NY) for each
TCi, j at point (i, j). The solution can be evaluated numerically
by means of the Gaussian elimination method or other similar
solvers.

Based on the above method, the temperature distribution
at the MEA/carbon plate interface,TCi, j , is updated in it-
eration until an optimal temperature distribution satisfying
the J-minimization criterion is obtained. Typically, theJ-
minimization criterion of the temperature prediction is set
with J< 1.0× 10−5.

Two cases of known temperature distribution functions
at the MEA/carbon plate interface are specified as the ex-
act temperature solutions. For comparison, both the present
approach and the existing approach[11] are applied to
evaluate the relative performance of the present method.
The two exact temperature functions,θ (x, y), are given
as:

Case 1 : θ(x, y) = 80+ 10x − 80x2 + 20y − 80y2 − 5xy

(12)

Case 2 : θ(x, y) =
[
sin
( xyπ

LW

)]2 + 2 sin
(xπ

L

)
(yπ)

w
sure

g rical
p ribu-
t grid
s e grid
s
a her-
m m-
p n of
c lanes
a
t rom
2 if-
f , the
g y
t

a d-
a tain
t MFC
b rical
t re so-
l d and
r end-
p
b
a ated
e pre-

diction of the MEA/carbon plate interface temperature dis-
tribution based on the simulated experimental temperature
data is identical to the exact temperature functionθ (x, y)
specified.

3. Results and discussion

Fig. 4 shows the advantages of the present approach. In
this figure, the predicted MEA/carbon plate interface temper-
ature distributions by the present point-by-point method and
by the polynomial-function method[11] are compared with
the exact temperature functions. Plotted in the left port are the
results for case 1, and the results for case 2 are plotted in the
right portion. It can be observed that for case 1 of which the
exact temperature function to predict is actually a polynomial
function expressed by Eq.(12), both the polynomial-function
and the present methods lead to the temperature solutions
identical to the exact temperature function. However, for the
irregular exact temperature function of case 2 given in Eq.
(13), the polynomial-function method fails to provide accu-

Fig. 5. Detailed temperature data alongx= 0.105 m andy= 0.105 m: com-
parison between polynomial-function method[11] and present approach, for
case 2.
+1.5 sin
W

+ 81 (13)

hereθ is in ◦C andx andy are in m.
Firstly, numerical checks have been performed to en

rid-independence of the direct problem solver. Nume
redictions of the three-dimensional temperature dist

ion in the PEMFC are obtained based on three different
ystems, and the obtained results are compared. Thre
ystems, havingNX×NY×NZ= 11×11× 41, 21× 21× 41,
nd 31×31× 41 grids, respectively, are tested. For the t
al condition in which the MEA/carbon plate interface te
erature is specified with the exact temperature functio
ase 2, the numerical temperature solutions on the p
t z= 0.0015 m and aty= 0.105 m are shown inFig. 3. In

he figure, it is found that an increase in grid number f
1× 21× 41 to 31× 31× 41 produces no appreciable d

erences between the two sets of solutions. Therefore
rid system of 21× 21× 41 grids is used in this stud

ypically.
The two exact temperature functions defined in Eqs.(12)

nd(13) are introduced individually for the thermal boun
ry condition at the MEA/carbon plate interface to ob

he three-dimensional temperature solutions in the PE
y the direct problem solver. From the obtained nume

hree-dimensional temperature solutions, the temperatu
utions on the outer surface of the end plate are recorde
egarded as the exact temperature distribution on the
late surface (Texi, j). The exact temperatureTexi, j is added
yσω to provide the simulated experimental dataT̄ei,j which
re required for testing the inverse approach, as indic
arlier. The inverse approach is acceptable only if the
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Fig. 6. Effects of experimental temperature uncertainty and number of temperature prediction points on predictions of temperature distribution atMEA/carbon
plate interface.

rate predictions. Nevertheless, on the other hand, the present
approach still leads to a satisfactory temperature distribution
which closely agrees with the exact temperature function.

In order to have a closer look at the discrepancy be-
tween the two sets of results obtained by the two approaches,
the predicted temperature profiles along the central line at
x= 0.105 m and the central line aty= 0.105 m are plotted and
compared with the exact profiles for case 2 (Fig. 5). The re-
sults obtained by the polynomial-function method are shown
in the upper plot, and the results by the present approach
in the lower plot. The dashed and dash-dot curves indicates
the predicted solutions alongx= 0.105 m andy= 0.105 m, re-
spectively. The corresponding exact profiles are indicated by
the solid and the thicker-solid curves. It is clearly observed

that for this case the polynomial-function method produces
significant errors in the predictions, while the present ap-
proach leads to satisfaction.

It is suspected that the uncertainty (σ) of the simulated
experimental temperature data (T̄ei,j) may play an important
role in the accuracy of the solution. Meanwhile, the number
of the temperature prediction points (NX×NY) on the end
plate surface may also be an influential factor.Fig. 6 shows
the effects of uncertainty and number of prediction points on
predictions of temperature distribution at MEA/carbon plate
interface. It is found that the error of predictions is sensi-
tive to the measurement uncertainty, and the relation between
the prediction error and the measurement uncertainty is de-
pendent on the number of prediction points. When 11× 11
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Fig. 7. Effects of initial guess on the final solution, for case 2.
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Fig. 8. Iterating objective functions with different initial guesses, for case 2.

prediction points are used, an uncertainty of 0.001◦C in sim-
ulated experimental data causes no appreciable prediction
error. Asσ is elevated to be 0.01◦C, the average fluctuation
of the temperature predictions for the MEA/carbon plate in-

F
f

terface is only increased to approximately 0.24◦C. However,
when 21× 21 prediction points are used, the fluctuation of the
predictions becomes severer. The average value of the fluctu-
ation reaches 2.26◦C atσ = 0.01◦C, which is not acceptable
in practical applications. The increase in prediction error with
the number of prediction points is expectable in the present
approach since in this point-by-point approach, temperature
at all theNX×NYprediction points on the MEA/carbon plate
interface (TCi,j) are regarded as the major variables to predict.
A larger number of the prediction points means a larger group
of the major variables, and therefore, results in difficulties in
reducing the magnitudes of the prediction errors. To improve
the performance of the present approach, the fluctuation of
the temperature predictions must be further reduced in future
works.

One may have reasons to suspect that the point-by-point
method might not lead to unique solution when different
initial guesses are used. To test the uniqueness of the pre-
dictions, two kinds of initial guess are adopted. One is a
uniform temperature distribution,Tini = 80◦C, and the other
is a linearly-varied distribution from 0 to 80◦C given with
Tini = 80− (80/0.21)x◦C. Fig. 7 shows the predicted tem-
perature distributions yielded from the two different initial
guesses by the present approach for case 2. It is interesting to
find that for this case only one unique solution is obtained re-
g tions
a iated
o n in
F
i rather
r itial
g rally
g ow-
e nver-
g gate-
g s of
u era-
t d
i ged
i ion
a s the
s ver-
g

4

ig. 9. Variation in temperature profile along the central line aty= 0.147 m,
or initial guess ofTini = 80◦C.

de-
t the
M ea-
s plate.
A re-
s Some
i ed as
e e in-
fl ta on
ardless of the initial guesses, and both the obtained solu
re in good agreement with the exact function. The assoc
bjective functions varying with iteration step are show
ig. 8. The convergence criterion is set withJ< 1× 10−5. It

s observed that the objective functions are decreased
apidly. The objective function of the test case with the in
uess of linearly varied temperature distribution is gene
reater than that the uniform temperature distribution; h
ver, in five to six iteration steps, both cases achieve co
ence and lead to identical solutions by using the conju
radient method. For the test case with the initial gues
niform temperature distribution, the variation in temp

ure profile along the central line aty= 0.147 m is illustrate
n Fig. 9. It is observed that the temperature profile is chan
mmediately to a profile which is close to the final solut
t just the second iteration step. Then, in a few iteration
olution is rapidly improved to the one satisfying the con
ence criterion.

. Concluding remarks

A non-destructive inverse method is developed to
ermine internal global temperature distribution at
EA/carbon plate interface in PEMFCs based on the m

ured temperature data on the outer surface of the end
concept of point-by-point temperature prediction is p

ented and demonstrated by a number of test cases.
rregular temperature functions are specified and regard
xact temperature distributions to predict. Meanwhile, th
uence of uncertainty in the measured temperature da
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the outer surface is evaluated. Relative performance of the
present approach is demonstrated by a comparison with the
polynomial-function method proposed by Cheng and Chang
[11] in predicting the exact temperature distributions.

It is observed that for case 1 of which the exact tempera-
ture function to predict is actually a polynomial function, both
the polynomial-function and the present methods lead to the
temperature solutions identical to the exact temperature func-
tion. However, for the irregular exact temperature function of
case 2, the polynomial-function method produces significant
errors in the predictions, while the present approach leads to
satisfaction.

The uncertainty (σ) of the simulated experimental temper-
ature data (̄Tei,j) and the number of the temperature prediction
points (NX×NY) on the end plate surface are influential fac-
tor in the accuracy of the solution. It is found that the error of
predictions is sensitive to the measurement uncertainty, and
the relation between the prediction error and the measure-
ment uncertainty is dependent on the number of prediction
points. The prediction error increases with the measurement
uncertainty or the number of prediction points.

Effects of the initial guess on the uniqueness of the pre-
dicted solution are investigated. It is found that for case 2
only one unique solution is obtained regardless of the ini-
tial guesses, and the obtained solutions from different initial
g
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